Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid-base balance in Opsanus beta.

نویسندگان

  • Janet Genz
  • Josi R Taylor
  • Martin Grosell
چکیده

Marine teleosts have extracellular fluids less concentrated than their environment, resulting in continual water loss, which is compensated for by drinking, with intestinal water absorption driven by NaCl uptake. Absorption of Cl(-) occurs in part by apical Cl(-)/HCO(3)(-) exchange, with HCO(3)(-) provided by transepithelial transport and/or by carbonic anhydrase-mediated hydration of endogenous epithelial CO(2). Hydration of CO(2) also liberates H(+), which is transported across the basolateral membrane. In this study, gulf toadfish (Opsanus beta) were acclimated to 9, 35 and 50 ppt. Intestinal HCO(3)(-) secretion, water and salt absorption, and the ensuing effects on acid-base balance were examined. Rectal fluid excretion greatly increased with increasing salinity from 0.17+/-0.05 ml kg(-1) h(-1) in 9 ppt to 0.70+/-0.19 ml kg(-1) h(-1) in 35 ppt and 1.46+/-0.22 ml kg(-1) h(-1) in 50 ppt. Rectal fluid composition and excretion rates allowed for estimation of drinking rates, which increased with salinity from 1.38+/-0.30 to 2.60+/-0.92 and 3.82+/-0.58 ml kg(-1) h(-1) in 9, 35 and 50 ppt, respectively. By contrast, the fraction of imbibed water absorbed decreased from 85.9+/-3.8% in 9 ppt to 68.8+/-3.2% in 35 ppt and 61.4+/-1.0% in 50 ppt. Despite large changes in rectal base excretion from 9.3+/-2.7 to 68.2+/-20.4 and 193.2+/-64.9 mumol kg(-1) h(-1) in 9, 35 and 50 ppt, respectively, acute or prolonged exposure to altered salinities was associated with only modest acid-base balance disturbances. Extra-intestinal, presumably branchial, net acid excretion increased with salinity (62.0+/-21.0, 229.7+/-38.5 and 403.1+/-32.9 mumol kg(-1) h(-1) at 9, 35 and 50 ppt, respectively), demonstrating a compensatory response to altered intestinal base secretion associated with osmoregulatory demand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The intestinal response to feeding in seawater gulf toadfish, Opsanus beta, includes elevated base secretion and increased epithelial oxygen consumption.

Intestinal HCO3- secretion is essential to marine teleost fish osmoregulation and comprises a considerable source of base efflux attributable to both serosal HCO3- and endogenous CO2 hydration. The role of intestinal HCO3- secretion in dynamic acid-base balance regulation appears negligible in studies of unfed fish, but evidence of high intestinal fluid [HCO3-] in fed marine teleosts led us to ...

متن کامل

Regulation of apical H⁺-ATPase activity and intestinal HCO₃⁻ secretion in marine fish osmoregulation.

The absorption of Cl(-) and water from ingested seawater in the marine fish intestine is accomplished partly through Cl(-)/HCO(3)(-) exchange. Recently, a H(+) pump (vacuolar-type H(+)-ATPase) was found to secrete acid into the intestinal lumen, and it may serve to titrate luminal HCO(3)(-) and facilitate further Cl(-)/HCO(3)(-) exchange, especially in the posterior intestine, where adverse con...

متن کامل

Ouabain-sensitive bicarbonate secretion and acid absorption by the marine teleost fish intestine play a role in osmoregulation.

The gulf toadfish (Opsanus beta) intestine secretes base mainly in the form of HCO3- via apical anion exchange to serve Cl- and water absorption for osmoregulatory purposes. Luminal HCO3- secretion rates measured by pH-stat techniques in Ussing chambers rely on oxidative energy metabolism and are highly temperature sensitive. At 25 degrees C under in vivo-like conditions, secretion rates averag...

متن کامل

Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation.

Although endogenous CO2 hydration and serosal HCO3- are both known to contribute to the high rates of intestinal HCO3- secretion important to marine fish osmoregulation, the basolateral step by which transepithelial HCO3- secretion is accomplished has received little attention. Isolated intestine HCO3- secretion rates, transepithelial potential (TEP) and conductance were found to be dependent o...

متن کامل

Intelligence Impacts of Co 2 on Acid - Base Balance , Rectal Base Excretion and Intestinal

The processing of seawater by the marine teleost fi sh intestine includes high rates of base (bicarbonate) secretion into the intestinal fl uids. The resulting high bicarbonate concentrations in the intestinal fl uids combine with the calcium in the ingested seawater to form calcium carbonate crystals. This process is important for the salt and water balance of the marine teleost fi sh and lead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2008